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Text Mining

Transformation of unstructured text data into 

machine-readable formats

Named Entity Linking (NEL)

To link entities in text to concepts of Knowledge 

Bases (KBs) that describe their meaning

Public Health
ID:1

Food Quality
ID:3

Disease outbreaks
ID:2

Disease hotspot
ID:5

Epidemics
ID:4

Pandemics
ID:6

Opioid epidemic
ID:7

A pandemic is an 

epidemic of an infectious 

disease that has spread 

across a large region...

pandemic

Knowledge base

Text Entity

Motivation
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https://en.wikipedia.org/wiki/Epidemic
https://en.wikipedia.org/wiki/Epidemic
https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Infectious_disease
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Why are NEL systems important?

Motivation

Knowledge Base 
curation/building

Performance of 
search engines

Essential component in 
Text Mining pipelines
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Typical NEL System

Motivation

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

4
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lack of context incomplete knowledge bases multilingual performanceLimitations

Typical NEL System

Motivation

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

In the biomedical 
domain

specialized language lack of annotated datasets
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Improvement of local NEL1

REEL: Improvement of global NEL 

with Relation Extraction

2

Hybrid model4

NILINKER: Linking unlinkable entities 

to KBs

3

Evaluation on new corpus5

Main goal
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Goals

 To tackle limitations of NEL 

models to achieve SOTA in the 

biomedical domain

Specific goals
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1. Improvement of local NEL

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

lack of context

Deep Semantic Entity Linking - Pedro Ruas           

Typical NEL System

An entity has always the same candidates list
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1. Improvement of local NEL
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➔ To use pre-trained language models to improve the determination of local similarity between entity 

and KB candidates 

Goal

1. Large KB candidates list for each entity:

2. Contextualised embeddings for entities + candidates (BERT, ClinicalBERT, BioBERT) 

3. Similarity score (entity/candidate pairs) 

4. Filter out less relevant candidates

multi-layer perceptron → conditional probabilities for each pair mention-candidate

Approach

● abbreviation expansion
● string matching
● synonyms lookup
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2. REEL: Improvement of global NEL with Relation Extraction

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

incomplete KBs

Typical NEL System
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2. REEL: Improvement of global NEL with Relation Extraction

«gastrointestinal (GI) 
toxicity»

«(insulin-dependent) 
diabetes mellitus»

Gastrointestinal 
Diseases
D005767

Tuberculosis, 
Gastrointestinal

D014385

Gastrointestinal 
Neoplasms
D005770

Gastrointestinal 
Hemorrhage

D006471

Gastrointestinal 
Stromal Tumor

D046152

Diabetes Mellitus, 
Insulin-Dependent

D003922

cardiomyopathy
Cardiomyopathy

D009202

Disambiguation 
graph

KB candidates

Exact match

Exact match

Recognized 
entities

Candidate 
generation

Too few edges

Decreased 
precision

Edges based on 
KB relations

Graph-based systems build a disambiguation graph with candidates for all entities in a given document
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2. REEL: Improvement of global NEL with Relation Extraction

11

➔ Relation Extraction systems increase the available semantic information for NEL systems, which in 

turn increases their precision 

Hypothesis

● Availability of Relation Extraction systems in biomedical and life sciences domains

Challenges
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2. REEL: Improvement of global NEL with Relation Extraction

● «Gastrointestinal diseases can be associated with diabetes mellitus»

● «Cardiomyopathy is defined by the existence of abnormal myocardial structure in individuals with diabetes mellitus»

1. Entities recognized in scientific literature + normalization with MER tool

Gastrointestinal diseases → Gastrointestinal diseases D005767

diabetes mellitus → Diabetes Mellitus, Insulin-Dependent D003922

Cardiomyopathy → Cardiomyopathy D009202

Solution: to apply BO-LSTM (a deep learning RE tool) to complete disambiguation graphs

2. Extraction of relations between entities

D005767: Gastrointestinal diseases ↔ D003922: diabetes mellitus 

D009202: cardiomyopathy ↔  D003922: diabetes mellitus
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2. REEL: Improvement of global NEL with Relation Extraction

Solution: to apply BO-LSTM (a deep learning RE tool) to complete disambiguation graphs

2. Extraction of relations between entities

D005767: Gastrointestinal diseases ↔ D003922: diabetes mellitus 

D009202: cardiomyopathy ↔  D003922: diabetes mellitus

Disambiguation graph

Gastrointestinal 
Diseases
D005767 Tuberculosis, 

Gastrointestinal
D014385

Gastrointestinal 
Neoplasms
D005770

Gastrointestinal 
Hemorrhage

D006471

Gastrointestinal 
Stromal Tumor

D046152

Diabetes Mellitus, 
Insulin-Dependent

D003922

Cardiomyopathy
D009202

3. Add relations to disambiguation graph
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2. REEL: Improvement of global NEL with Relation Extraction

Gastrointestinal 
Diseases
D005767 Tuberculosis, 

Gastrointestinal
D014385

Gastrointestinal 
Neoplasms
D005770

Gastrointestinal 
Hemorrhage

D006471

Gastrointestinal 
Stromal Tumor

D046152

Diabetes Mellitus, 
Insulin-Dependent

D003922

Cardiomyopathy
D009202

«gastrointestinal (GI) 
toxicity»

«(insulin-dependent) 
diabetes mellitus»

cardiomyopathy

D005767: 540.2
D006471: 167.5
D014385: 123.2
D005770: 17.2
D046152: 4.9

D003922

D009202

Diabetes Mellitus, 
Insulin-Dependent

D003922

Cardiomyopathy
D009202

Gastrointestinal 
Diseases
D005767

Complete disambiguation 
graph

Recognized 
entities

Personalized 
PageRank algorithm

Disambiguation
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Work published in a journal article:
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2. REEL: Improvement of global NEL with Relation Extraction
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2. REEL: Improvement of global NEL with Relation Extraction

Results on ChEBI annotations from CRAFT corpus 

- Relations extracted by BO-LSTM on the same corpus

baselines
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2. REEL: Improvement of global NEL with Relation Extraction

Results on disease annotations

baselines

Results on chemical annotations

baselines

BC5CDR corpus: Gold labeled relations of the corpus included in the disambiguation graph
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2. REEL: Improvement of global NEL with Relation Extraction

Relation 
Extraction

tool

MER tool REEL

Feedback loop between Relation Extraction and NEL
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«Arrhythmogenic cardiomyopathy»
● Empty candidates list 

● Correct KB candidate not on the list

● Score below defined threshold

Decreased NEL
performance

A NIL entity is unlinkable when there is no concept in the KB that describe it

19

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

incomplete KBs

3. NILINKER: Linking unlinkable entities to KBs

Recognized entity

Typical NEL System
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3. NILINKER: Linking unlinkable entities to KBs

Another example

«bioinformatician»

Scientist

BiologistEntomologist Medician Professor

Slice of the DBpedia ontology

What concept do we choose to describe «bioinformatician»?

Recognized entity
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➔ It is possible to partially link NIL or unlinkable entities to knowledge bases (i.e. NIL entity Linking)

➔ NIL entity linking improves the performance of NEL models

Hypotheses

● Lack of evaluation dataset

● Lack of baseline approaches

Challenges

21

3. NILINKER: Linking unlinkable entities to KBs
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«Arrhythmogenic cardiomyopathy»

D001145: Arrhythmias, Cardiac

D001146: Arrhythmia, Sinus

D009202: Cardiomyopathy

D002312: Cardiomyopathy, Hypertrophic

Candidates + Word  are represented by 
embeddings 

Word 1 embeddings + candidates of Word 1 
assign weights to candidates of Word 2 and 

vice-versa

Candidate retrieval from Word-Concept dict

NIL entity

Attention-based model to select the most relevant candidate for a NIL entity

Selection of highest weighted candidate 

D009202: Cardiomyopathy

«Arrhythmogenic cardiomyopathy» can be 
added to the KB as a child concept of 

“Cardiomyopathy”
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3. NILINKER: Linking unlinkable entities to KBs



 c1
w1        c2

w1             

Word 1 (w1) Word 2 (w2)

c1
w2                c

2
w2 

word 
embeddings

candidate 
embeddings

NIL entity 

a
21

a
22 a

11
a

12

x x x x

+ +

aggregated
candidate 

embeddings

σ

ŷ

w’1 w’2

prediction scores

attention 
weights

Attention-based model to select the most relevant candidate for a NIL entity

Deep Semantic Entity Linking - Pedro Ruas 23

3. NILINKER: Linking unlinkable entities to KBs
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Two different evaluation approaches

1. Generation of new dataset or adaptation of existing corpora

Parkinsonian 
disorders

Parkinsonian 
disorders
D020734 Assumption: If there was not a disambiguating concept 

for an entity, it should be linked to its direct ancestor

Named Entity

Concept

Parkinsonian 
disorders

Movement 
disorders
D009069 

Named Entity

Concept

24

3. NILINKER: Linking unlinkable entities to KBs
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Two different evaluation approaches

2.  Performance of the graph-based NEL model on existing corpora

● NCBI disease 

● BC5CDR

25

3. NILINKER: Linking unlinkable entities to KBs

Gastrointestinal 
Diseases
D005767 Tuberculosis, 

Gastrointestinal
D014385

Gastrointestinal 
Neoplasms
D005770

Gastrointestinal 
Hemorrhage

D006471

Gastrointestinal 
Stromal Tumor

D046152

Diabetes Mellitus, 
Insulin-Dependent

D003922

Cardiomyopathy
D009202

Arrhythmogenic 
cardiomyopathy

new ID

Evaluation corpora

● Convert 30 % of the annotations into NIL entities

● Application of NILINKER

● Complete the disambiguation graph with the output 



➔ The integration of the the previous modules achieves state-of-the-art performance in the Biomedical 

and Life Sciences domains

Hypothesis

● Combination of different modules into a single model

Challenges

4. Hybrid model

Evaluation corpora

● NCBI disease 

● BC5CDR 

● (new) MultiNEL: Portuguese, English and Spanish biomedical corpus

Deep Semantic Entity Linking - Pedro Ruas
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4. Hybrid NEL model

1

Candidate generation Candidate ranking

2

Candidate disambiguation

3

REEL

NILINKER

Local model
Target biomedical KBs

➢ ChEBI

➢ GO

➢ HPO

➢ CTD-Anatomy

➢ CTD-Chemicals

➢ MEDIC
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5. Evaluation on new corpus

MultiNEL: Portuguese, English and Spanish biomedical corpus

Document retrieval (SciELO, 
PubMED)

Automatic entity annotation 
(DeCS vocabulary, ICD10-CM)

Annotation revision by humans

Preliminary work: Short paper published in Proceedings of the SIIRH 2020 Workshop (ECIR 2020)

next step
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Suggestions by Prof. Wen Hua

● To focus the presentation on biomedical challenges

● To improve the presentation by: 

○ talking about the local model first

○ presenting the results of the published article

● To improve the explanation of the interaction between NEL/RE in the REEL work

● To provide more examples of NIL entities, specially in the biomedical domain

● To improve the evaluation of the NILINKER model
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