

Deep Semantic Entity Linking

Pedro Ruas

PhD student in Informatics

LASIGE-FCUL

Faculdade de Ciências, Universidade de Lisboa, Portugal

Mentor: Professor Wen Hua

ECIR 2021 Doctoral Consortium 28th March, 2021

1

Why are NEL systems important?

Essential component in **Text Mining pipelines**

Ę

Performance of search engines

Y

Knowledge Base curation/building

Goals

1. Improvement of local NEL

An entity has always the same candidates list

1. Improvement of local NEL

Goal

→ To use pre-trained language models to improve the determination of local similarity between entity and KB candidates

Approach

- → 1. Large **KB candidates list** for each entity:
 - abbreviation expansion
 - string matching
 - synonyms lookup

→ 2. **Contextualised embeddings** for entities + candidates (BERT, ClinicalBERT, BioBERT)

→ 3. Similarity score (entity/candidate pairs)

multi-layer perceptron \rightarrow conditional probabilities for each pair mention-candidate

→ 4. Filter out less relevant candidates

Graph-based systems build a disambiguation graph with candidates for all entities in a given document

Hypothesis

→ Relation Extraction systems increase the available semantic information for NEL systems, which in turn increases their precision

Challenges

• Availability of Relation Extraction systems in biomedical and life sciences domains

Solution: to apply BO-LSTM (a deep learning RE tool) to complete disambiguation graphs

1. Entities recognized in scientific literature + normalization with MER tool

- «Gastrointestinal diseases can be associated with diabetes mellitus»
- «Cardiomyopathy is defined by the existence of abnormal myocardial structure in individuals with diabetes mellitus»

Gastrointestinal diseases	\rightarrow	Gastrointestinal diseases D005767
diabetes mellitus	\rightarrow	Diabetes Mellitus, Insulin-Dependent D003922
Cardiomyopathy	\rightarrow	Cardiomyopathy D009202

2. Extraction of relations between entities

D005767: Gastrointestinal diseases ↔ D003922: diabetes mellitus

D009202: cardiomyopathy ↔ D003922: diabetes mellitus

Solution: to apply BO-LSTM (a deep learning RE tool) to complete disambiguation graphs

Work published in a journal article:

Results on ChEBI annotations from CRAFT corpus

baselines

- Relations extracted by BO-LSTM on the same corpus

Model	CRAFT-ChEBI			
	Р	R	F1	
String matching	77.8	78.0	77.9	
PPR-IC	87.1	79.9	83.3	
REEL(Corpus)	91.3	80.9	85.8	
REEL(KB+Corpus)	91.3	80.9	85.8	

Deep Semantic Entity Linking - Pedro Ruas

16

BC5CDR corpus: Gold labeled relations of the corpus included in the disambiguation graph

Results on disease annotations

Model	All			
	Р	R	F1	
String matching	82.7	74.7	78.5	
PPR-IC	83.4	74.9	78.9	
REEL(Corpus)	86.9	75.6	80.9	
REEL(KB+Corpus)	86.6	75.5	80.7	

baselines

Results on chemical annotations

	BC5CDR-Chemicals				
	Model	All			
		P	R	F1	
	String matching	94.9	84.1	89.2	
ennes	PPR-IC	96.7	84.4	90.1	
	REEL(Corpus)	97.0	84.4	90.3	
	REEL(KB+Corpus)	97.0	84.4	90.3	

Feedback loop between Relation Extraction and NEL

What concept do we choose to describe «bioinformatician»?

Hypotheses

→ It is possible to partially link NIL or unlinkable entities to knowledge bases (i.e. NIL entity Linking)

→ NIL entity linking improves the **performance** of NEL models

Challenges

,		
•	Lack of evaluation dataset	
•	Lack of baseline approaches	

Attention-based model to select the most relevant candidate for a NIL entity

Attention-based model to select the most relevant candidate for a NIL entity

Two different evaluation approaches

1. Generation of new dataset or adaptation of existing corpora

Two different evaluation approaches

2. Performance of the graph-based NEL model on existing corpora

4. Hybrid model

Hypothesis

→ The integration of the the previous modules achieves state-of-the-art performance in the Biomedical and Life Sciences domains

Challenges

•	Combination of different modules into a single model

Evaluation corpora

•	NCBI disease	`` !
٠	BC5CDR	
•	(new) MultiNEL: Portuguese, English and Spanish biomedical corpus	·,

4. Hybrid NEL model

5. Evaluation on new corpus

MultiNEL: Portuguese, English and Spanish biomedical corpus

Document retrieval (SciELO, PubMED) Automatic entity annotation (DeCS vocabulary, ICD10-CM)

Annotation revision by humans

Preliminary work: Short paper published in Proceedings of the SIIRH 2020 Workshop (ECIR 2020)

Towards a multilingual corpus for Named Entity Linking evaluation in the clinical domain *

Pedro Ruas^{1[0000-0002-1293-4199]}, André Lamúrias^{1[0000-0001-7965-6536]}, and Francisco M Couto^{3[0000-0003-0627-1496]}

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal ps_ruas@fc.ul.pt

Abstract. We propose a new multilingual, parallel corpus for Named Entity Linking benchmarking which comprises English, Portuguese and Spanish clinical case reports¹. The medical diagnostic entities in the reports were annotated with the respective code of the International Classification of Diseases 10 - Clinical Modification (ICD10-CM) terminology and its Portuguese and Spanish versions. The result is a preliminary annotation set, which will be further validated and expanded by humans. Additionally, the ICD10-CM codes in the annotations will be mapped to the respective Medical Subject Headings (MeSH) identifiers when possible.

Keywords: Text Mining · Multilingual clinical case reports · Named Entity Linking · Information retrieval · Named Entity Recognition

	English	Portuguese	e Spanish
Abstracts retrieved	639	639	639
Abstracts with annotations	217	197	199
Ratio of annotated abstracts	0.340	0.308	0.314
Entity mentions	533	432	465
Entity mentions per annotated abstract	2.456	2.193	2.340
Linked entity mentions	463	432	389
Linked entity mentions per annotated abstract	2.134	2.193	1.955
Ratio of linked entity mentions	0.867	1.000	0.837

- To focus the presentation on biomedical challenges
- To improve the presentation by:
 - talking about the local model first
 - presenting the results of the published article
- To improve the explanation of the interaction between NEL/RE in the REEL work
- To provide more examples of NIL entities, specially in the biomedical domain
- To improve the evaluation of the NILINKER model

Deep Semantic Entity Linking

Pedro Ruas

PhD student in Informatics

LASIGE-FCUL

Faculdade de Ciências, Universidade de Lisboa, Portugal

Mentor: Professor Wen Hua

ECIR 2021 Doctoral Consortium 28th March, 2021

Funding

This work was supported by FCT through funding of Deep Semantic Tagger (DeST) project (ref. PTDC/CCI-BIO/28685/2017, LASIGE Research Unit (ref. UIDB/00408/2020 and ref. UIDP/00408/2020) and by FCT through funding of PhD Scholarship ref.2020.05393.BD

UNIVERSIDADE De lisboa

